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Project motivation

• Agriculture’s significant GHG emissions role 
• Potential cost-effective mitigation options
• Analyses of agriculture’s relative global mitigation 

role – relative across options, regions, and time
• Need for globally consistent abatement cost estimates 

–biophysical dynamics, economic variables, 
methodology, b/w baseline and management 
alternatives

• Complicating biophysical characteristics: multiple 
GHG fluxes, spatial heterogeneity, dynamic responses 

• Non-CO2 mandate



Outline

• Project overview – GHG mitigation on 
croplands, rice paddies, and livestock 
emissions

• Cropland GHG mitigation 
– Methods – models & data, regions, resolution
– Physical effects
– Economic costs

• Conclusion & future opportunities



Advancing understanding of mitigation costs –
Enhanced international Ag abatement curves

DNDC model 
for Asian rice 
systems

DAYCENT 
model for 
world 
croplands

Lit sources for 
livestock 
options

Biophysical
∆ GHGs

∆yields/productivity
∆ fertilizer inputs

Economic
Ag commodity and 
input prices (current 

and projected)
∆ labor

∆ capital costs
Input cost shares

Biophysical Modeling Abatement cost curves 
for 2000, 2010 and 2020
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Product: regional abatement curves

The set of international GHG abatement curves for 
2000, 2010 and 2020

Croplands 
36 regions
Wheat, maize, 

soybeans
Irrigated and 

rainfed
6 management 

options
N2O and soil C

Rice paddies 
12 Asian regions
Irrigated and rainfed
6 management 

options
CH4, N2O, soil C

Livestock
36 regions
Cattle (beef and 

dairy) & hogs
Management options: 

6 for enteric, 8 for 
manure

CH4 and N2O



World croplands:  application of DAYCENT

• DAYCENT
– Process-based model w/ daily time step
– Inputs: soil properties, crop type, daily climate data, management 

practices, synthetic & organic N additions
– Outputs: N2O, SOC, yields
– Now used for majority of ag soil N2O in annual Inventory of U.S. 

Greenhouse Gas Emissions and Sinks reported by EPA
• Global datasets of weather (NOAA), soils (FAO), cropland area 

(IGBP, GLC) mapped to 2° x 2° resolution
• Maize, wheat & soybean systems, under both irrigated & 

rainfed conditions (then weighted according to IFPRI %’s by 
crop, region, over time)

• Synthetic fertilizers: historic rates (FAO, IFA); projected rates 
(FAO yield/fertilizer relationships w/ IFPRI yields)

• Organic fertilizers: historic rates (FAO, IPCC); projected (EPA)







GHG mitigation options chosen for croplands

• Precision or split fertilization
• Reduce baseline synthetic nitrogenous 

fertilizer application rate by 
– 10%
– 20%
– 30%

• Nitrification inhibitors
• Conversion from conventional tillage to 

no-till



Biophysical responses 
e.g., Argentina rainfed wheat CT to NT

2000 2005 2010 2015 2020
Change (%) Change (%) Change (%) Change (%) Change (%)

Yield (kg/ha) 86 (4%) 92 (4%) 97 (4%) 109 (5%) 120 (5%)

GHG emissions (kg CO2eq/ha)
System carbon -231 (n/a) -246 (n/a) -262 (n/a) -276 (n/a) -290 (n/a)
Direct N2O -77 (-15%) -84 (-14%) -90 (-14%) -93 (-13%) -96 (-13%)
Indirect N2O -3 (-1%) -3 (-1%) -3 (-1%) -4 (-1%) -5 (-1%)
Total -311 (-39%) -333 (-37%) -355 (-36%) -373 (-36%) -391 (-35%)

Changes associated with conversion from conventional tillage to no-till for rainfed wheat in 
Argentina



Responses to cropland management alternatives 
e.g., Argentina rainfed wheat 2010
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Management option
System 
Carbon N2O Net GHG Yield

Abatement 
Cost

Regional 
cost

kg CO2/ha kg CO2eq/hakg CO2eq/ha kg/ha $/tCO2eq $/tCO2eq
(out of 6) (out of 36)

Nitrogen inhibitor 3 4 3 2 3 20
Split fertilization 2 3 2 1 2 14

Reduce fertilizer 30% 6 1 4 6 n/a n/a
Reduce fertilizer 20% 5 2 5 5 n/a n/a
Reduce fertilizer 10% 4 6 6 4 n/a n/a

CT to NT 1 5 1 3 1 9

Nitrogen inhibitor 3 4 2 2 3 19
Split fertilization 2 6 3 3 2 16

Reduce fertilizer 30% 6 1 6 6 n/a n/a
Reduce fertilizer 20% 5 2 5 5 n/a n/a
Reduce fertilizer 10% 4 5 4 4 n/a n/a

CT to NT 1 3 1 1 1 3

Nitrogen inhibitor 2 1 2 2 5 22
Split fertilization 3 4 3 3 6 23

Reduce fertilizer 30% 6 3 4 6 2 6
Reduce fertilizer 20% 5 5 5 5 4 8
Reduce fertilizer 10% 4 6 6 4 3 7

CT to NT 1 2 1 1 1 1

Maize

Soybean

Wheat

Ranking of mitigation responses - Argentina 
rainfed maize, soybean, and wheat; 2010



Management option
System 
Carbon N2O Net GHG Yield

Abatement 
Cost

Regional 
cost

kg CO2/ha kg CO2eq/hakg CO2eq/ha kg/ha $/tCO2eq $/tCO2eq
(out of 6) (out of 36)

Nitrogen inhibitor 3 4 3 2 3 20
Split fertilization 2 3 2 1 2 14

Reduce fertilizer 30% 6 1 4 6 n/a n/a
Reduce fertilizer 20% 5 2 5 5 n/a n/a
Reduce fertilizer 10% 4 6 6 4 n/a n/a

CT to NT 1 5 1 3 1 9

Nitrogen inhibitor 3 4 2 2 3 19
Split fertilization 2 6 3 3 2 16

Reduce fertilizer 30% 6 1 6 6 n/a n/a
Reduce fertilizer 20% 5 2 5 5 n/a n/a
Reduce fertilizer 10% 4 5 4 4 n/a n/a

CT to NT 1 3 1 1 1 3

Nitrogen inhibitor 2 1 2 2 5 22
Split fertilization 3 4 3 3 6 23

Reduce fertilizer 30% 6 3 4 6 2 6
Reduce fertilizer 20% 5 5 5 5 4 8
Reduce fertilizer 10% 4 6 6 4 3 7

CT to NT 1 2 1 1 1 1

Maize

Soybean

Wheat

Ranking of mitigation responses - Argentina 
rainfed maize, soybean, and wheat; 2010

n/a = commodity currently not grown or positive change in emissions



Comparison of Argentina to FSU 
e.g., rainfed maize, soybean, and wheat; 2010

Management option
Abatement 

Cost
Regional 

cost
Abatement 

Cost
Regional 

cost
$/tCO2eq $/tCO2eq $/tCO2eq $/tCO2eq

Nitrogen inhibitor 3 20 3 13
Split fertilization 2 14 1 6

Reduce fertilizer 30% n/a n/a n/a n/a
Reduce fertilizer 20% n/a n/a n/a n/a
Reduce fertilizer 10% n/a n/a n/a n/a

CT to NT 1 9 2 11

Nitrogen inhibitor 3 19 3 15
Split fertilization 2 16 1 7

Reduce fertilizer 30% n/a n/a n/a n/a
Reduce fertilizer 20% n/a n/a n/a n/a
Reduce fertilizer 10% n/a n/a n/a n/a

CT to NT 1 3 2 10

Nitrogen inhibitor 5 22 n/a n/a
Split fertilization 6 23 n/a n/a

Reduce fertilizer 30% 2 6 n/a n/a
Reduce fertilizer 20% 4 8 n/a n/a
Reduce fertilizer 10% 3 7 n/a n/a

CT to NT 1 1 n/a n/a

Wheat

Maize

Soybean

Argentina FSU



Abatement cost schedules
e.g., Argentina and FSU; 2010
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Concluding remarks

The set of international GHG abatement curves for 
2000, 2010 and 2020

Croplands 
36 regions
Wheat, maize, 
soybeans
Irrigated and rainfed
6 management 
options
N2O and soil C

Rice paddies 
12 Asian regions
Irrigated and rainfed
6 management 
options
CH4, N2O, soil C

Livestock
36 regions
Cattle (beef and dairy) 
& hogs
Management options: 

6 for enteric, 8 for 
manure
CH4 and N2O

Forthcoming EPA report: 
U.S. EPA (2006) Global Mitigation of 
Non-CO2 Greenhouse Gases (draft)



Concluding remarks

• Future opportunities
– Biophysical modeling of marginal effects
– Fuller set of Ag net GHG management options
– New sub-regional survey data

Thank you!!
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